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NOMENCLATURE* 

function of n in equation (18); 

molecular diffusion coefficient: 

rate of deformation tensor: 

dimensionless radial velocity: 

functions of Wi defined in equations (12) and (13); 

dimensionless rotational velocity; 

matrix tensor of a fixed co-ordinate system; 

dimensionless axial velocity; 

local mass flux; 

function defined in equation (9): 

mass transfer coeficient; 

consistency index; 

power-law index; 

distribution function of relaxation times; 

arbitrary isotropic pressure; 

stress tensor; 

deviatoric stress tensor: 

local radius; 

radius of disc; 

Reynolds number (= R29/v); 
Sherwood number for Newtonian fluid (= kR/D): 
Sherwood number for viscoelastic fluid; 

Weissenberg number (= J.Q/rl,): 

axial distance. 

Greek letters 

function of n in equation (17); 

convected time derivative; 

zero shear viscosity, 

dimensionless concentration; 

relaxation time function; 

Schmidt number (= v/D); 

kinematic viscosity; 

dimensionless axial distance: 

density; 

relaxation time; 
local shear stress on the surface of the disc: 

average shear stress on the surface of the disc: 

angular velocity. 

THE PROBLEMS concerned with the diffusive transport rates 

in macromolecular solutions have received some attention 

in recent years due to their obvious pragmatic significance. 

* Any set of consistent units may be used. Pa = -PSit + Pb 

It is well known that for such macromolecular solutions the 

changes in molecular alignment occurring in a shear field 

alter the momentum transfer characteristics quite signifi- 

cantly. The perplexing problem of the influence ofa shear field 

on the diffusion coefficient of a low molecular weight solute 

in such solutions can be answered satisfactorily only if such 

measurements were done under flow conditions with well 

defined shear rate levels in the region which is controlling 

the diffusive transport rates. 

One of the most widely used techniques for studying the 

convective mass and heat transport under well defined 

hydrodynamic conditions is the rotating disc apparatus 

(see Levi’ch [l], for instance). This technique has been used 

for obtaining the diffusivities of solutes in dilute polymeric 

solutions by Hansford and Litt [2], Luikov ef al. [3] and 

recently by Greif et al. [4]. The diffusivities were deduced 
on the basis of the theoretical solution of the convective 

diffusion equation. The latter was specifically obtained for 

transport from a disc rotating under laminar boundary 

layer flow conditions in inelastic power law fluids. The 

neglect of elasticity may not be strictly justified since all the 

polymer solutions used by these authors are known to 

possess significant levels of elasticity as evidenced by the 

presence of the secondary flow patterns under the experi- 

mental conditions as well as by the presence of the finite 

normal differences which these solutions am known to 

exhibit under viscometric flow conditions. Further recent 

work of Kale et al. [S] shows clearly that the momentum 

transfer characteristics of the rotating disc laminar boundary 

layer flows are influenced significantly by the presence of 

elasticity. Since the rotating disc technique is likely to be 

used more extensively in the future it is important to examine 

the influence ofelasticity, if any, on the rate of mass transport 

from the disc. This note assesses the problem theoretically 

and also draws attention to some important conclusions 

which can be drawn by performing rotating disc experiments, 

which are otherwise either difficult or impossible to draw. 

Elliott [6] has obtained the velocity distribution around a 

disc rotating in a viscoelastic liquid designated as Walters 

B’ liquid. The constitutive equations characterizing this 

liquid are given by Walters [7]. In the case of liquids with 

short memories or short relaxation times the constitutive 

equation is written in the form : 

(1) 
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with 

where 

and 

(2) 

(3) 

(4) 

Here pik is the stress tensor, p is an isotropic pressure, glk is 

the metric tensor of a fixed co-ordinate system xi, e’l’k’ is the 

rate of deformation tensor, ‘lo is the zero shear viscosity and 

N(r) is the distribution function of relaxation times r. 6/6t 

is the convected derivative. This fluid shows under visco- 

metric flow conditions a constant viscosity and tinitc 

primary normal stress differences which vary as the square 

of the shear rate. The limitations of such second order 

approximation of fluid behaviour have been discussed 

by Mashelkar et al. [8] and Kelkar et al. [9]. However 

the boundary layer approximations appear to be justified 

for such a fluid and the influence of elasticity on the rate of 

mass transport can be studied at least senii-quantitativelq 

by using such fluid behaviour description. 

‘The relevant convective diffusion equation lor the case 

of a disc rotating under laminar boundary layer flow condi- 

tions can be shown to reduce to (10): 

8% 
- = AH(;);. 
ag2 

(5) 

Elliott has obtained the expression for H(t) in the following 

form : 

H(5) = H,(5) + WiH,(S). (6) 

Here Wi is the Weissenberg number defined as Wi = An/q,. 

Equation (6) may be expanded in terms of the MacLaurin 

series. Using the expressions for F,, F,, G,, G,, Ho and H, 

reported by Elliott and also making use of the equations of 

continuity and motion we obtain the expansion up to the 

first three terms, 

H(6) = -(1.02 + 0.602Wi)~ + (2 + 1.5176lVi)g 

- (2.464 + 5288Wi) g. (7) 

Solution of equation (5) with the boundary conditions 

5 = 0, 0 = 1, 5 + ZQ, 0 = 0 will give the concentration 

distribution, diffusion flux and the Sherwood number (S/I*) 

as: 

Sh* = Re*/J(A) (8) 

where 

J(n) = j exp {A i H(5) dt} d<. 
0 0 

Using equation (7) we obtain 

(9) 

5 

/I 
.I‘ 

H(S)dt = /I - (1.02 + 0.602Wi); 
i 

0 

i4 
+ (2 + 1,5176Wi)$ - (2.464 + 5.288Wi)g (10) 

Setting n(l.02 + 0.602Wi) (5J/3!) = x3, inserting in equation 

(10) and rearranging after substitution in equation (9) we get 

3! 
J(A) = 

1.02 + 0,602Wi 
exp(-x3) 

0 

where 

f, = (2 + 1.5176Wi)/(l.O2 + O,602Wi)% (12) 

f’Z = (2,464 + 5.288Wi)/( 1.02 + 0.602Wi)*. (13) 

Following Newman [ 111 and Ke’tien and Stewart [I?]. the 

second exponential is now expanded, terms with identical 

powers of .4 are rearranged and each term is evaluated as a 

gamma function whereupon we obtain 

Sh* = Ref(l.02 + 0.602Wi) A ‘/[1.6439 + 0,2401f, /I ! 

+ 0,1248( f’; - 0+32351‘,) .I -‘I. (14) 

Equation (14) predicts Sh* for a viscoelastic fluid as a function 

of Re, Wi and /l. For a Newtonian fluid (Wi = 0) equation 

reduces to the corresponding expression given by Ke’Tien 

and Stewart [12] when expansion only up to the first three 

terms is considered. 

The influence of elasticity is now examined by calculating 

the ratio ofSh* (for viscoelastic fluid) and Sh, (for Newtonian 

fluid). Calculations at identical Re indicate that there is a 

marginal enhancement in mass transfer with increasing Wi 

(corresponding to increasing elasticity). Thus at Wi = 0.05, 

0.25 and 0.5: respectively, Sk* is found to be increased by 

1.3, 4.7 and 9 per cent: respectively. Since for large n an 

excellent approximation is given by Sh” cc Ai, this would 

indicate that the level of errors in the measured values of 

diffusivities when the presence of elasticity is neglected 

could be given approximately by 2. 7 and 13.5 per cent: 

respectively. It is of course hazardous to draw conclusions 

for large Wi. since the limitation of the second order approxi- 

mation mentioned earlier implies validity of these conclu- 

sions only for small values of Wi. 

An important point of possible practical significance 

emerges from this analysis. The addition of small amount of 

certain polymers is known to reduce the friction factors in 

internal flows and the moment coefficients in the external 

rotational flows under turbulent flow conditions [ 131. This 

addition, however, results in either a proportional decrease 

[I41 or a more than proportional decrease [15, 161 in heat 
or mass transfer coefficients. The work of Kale et al. [5] has 

shown that for the case of a disc rotating in dilute polymer 
solutions there is a significant reduction in frictional resist- 

ance even under laminar boundary layer flow conditions. 
The accompanied increase in heat or mass transfer rates 
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under the same conditions thus appears to suggest a signiti- 

cant advantage. 

When flow techniques are employed, the influence of 

shear rate on the diffusion coefficient can be comfortably 

studied for the case of solid dissolution since the shear rate 

in the region of thin concentration boundary layer can be 

assumed to be finite, well defined and approximately 

constant [17, 181. For the case of gas absorption, however, 

this does not appear to be the case (Mashelkar and Soylu 

[19]). In this case the stagnant media techniques (e.g. [ZO]) 

are unsuitable (no flow). Laminar jet technique (e.g. [21]) 

is also unsuitable (assumed flat velocity profile). Other model 

apparatus such as a wetted wall [22] or a wetted sphere 

column [19] also appear to be not very convenient. In such 

cases the gas absorption occurs from the stress free gas- 

liquid interface and the “depth of penetration” of the gas is 

usually very small. The presence of the sheared region 

inside the surface does not substantially influence the 

diffusive transport. The rotating disc technique as used by 

Greif et al. appears to be particularly suitable for such a 

study since the diffusional boundary layer is confined to a 

very thin zone near the disc surface which is the most 

sheared region and has finite well defined shear rates. If the 

liquid is assumed to be inelastIc as a slmphfication then the 

shear stress at the surface of the disc can be shown to be 

given by 

~ <I, = I(&“,,“+ I, ” - I’(“+ “rZn,m+ 11 
0 P 

x [F’(O)2 + ti’(O)‘]“’ ” JF’(0). (15) 

Using the expressions for F and G calculated by Mitschka 

and Ulbrecht [23], we can calculate the local shear stress 

on the surface of the disc as 

p,(n+ II (16) 

where 

B(n) = 0.1539 (17) 

It is interesting to note that for a power-law fluid the disc is 

no more uniformly accessible and the local mass transfer 

flux is given by [2] 

Since ~~ varies as r’““” ” andj(r) IX rjL” -“‘,” -“‘I it appears 

that the electrochemical technique used by Greif et al. can 

be suitably used for studying the dependence of the diffusivi- 

ties on the shear rate or the shear stress. It will be necessary 
to perform experiments only at a fixed rotational speed but 

at different activated circular ring portions on the disc. By 

keeping the ring portions reasonably small, a constant shear 

rate can be ensured. 

With the foregoing analysis it becomes clear that the work 

of Greif et al. is the only work in the literature from which 

the influence of shear stress on the diffusivity of gaseous 

solutes in polymer solutions can be reliably deduced. From 

equation (16) the area averaged shear stress on the disc 

surface is obtained as 

Thus z,, 
f 

is a strong function of the angular velocity 

(T avga fi “‘(““)). The analysis of the data of Greif et al. 

indicated that over approximately 50 fold change in T._ 

the diffusion coefficient remained constant. It is interesting 

to note here the striking contrast in the results obtained by 

Greif et al. and Wasan et al. [22] for polyox-WSR-301-0, 

system. Wasan et al. used a wetted wall column and obtained 

a very strong dependence of diffusivity on the shear rate at 

the wall. Since the work of Greif et al. provides the most 

sensitive test of the shear rate dependence of diffusivity, the 

conclusions of Wasan et al. hence appear to be somewhat 

doubtful. Recent work of Mashelkar and Soylu [19] with 

wetted sphere column does not also lend support to the 

type of observations reported by baasan et al. More experi- 

mental work (perhaps in the directions indicated in this 

work) is needed before such discrepancies may be completely 

resolved. 

CONCLUSION 

A theoretical analysis of the mass transport from a disc 

rotating under laminar boundary layer flow conditions into 

a Walters B’ liquid indicates that elasticity enhances the 

transport rate to some extent. This finite influence may have 

some effect on the deduced values of diffusivities. Rotating 

disc technique as used by Greif et al. appears to be more 

suitable for studying the shear rate dependence of diffusivi- 

ties of gaseous solutes than many of the existing model 

apparatus. The analysis of the work of Greif et al. indicates 

a shear rate independent diffurlon coefficient. 
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INTRODUCTION 

IN SUPPORT of industrial and research applications of the 
cascade arc plasma, considerable effort has been devoted to 
the theoretical determination of arc thermal properties. 
Although emphasis has been placed on the argon arc, some 
consideration has been given to hydrogen, helium and nitro- 
gen arcs as well. For this purpose numerous equilibrium 
models have been developed, the most rigorous of which is 
that due to Bower and Incropera [I]. Although more recent 
work has revealed the existence of thermochemical non- 
equilibrium effects [2, 33, the equilibrium model has been 
found suitable for many engineering purposes. In particular, 
results obtained from this model suggest important trends 
and provide excellent reference conditions for comparison 
with data and more refined non-equilibrium calculations. 

In this study the equilibrium model of Bower and Incropera 
[l] has been extended to krypton and xenon arc plasmas 
operating in a laminar mode. Interest in these gases has been 
stimulated by their intense radiation characteristics. Since 
krypton and xenon are more readily ionized than most other 
arc gases, they provide potentially excellent sources of both 
visible and ultraviolet radiation for photochemical proces- 
sing. 

FLOW MODEL AND RESULTS 

The flow model used in this study is identical to that 
developed by Bower and Incropera [1] and is based upon the 

assumption of local thermochemical equilibrium. Although 
calculations have been performed for both the entrance and 
asymptotic arc regions, results presented in this article are 
restricted to the asymptotic region. In this region, flow 
properties depend only upon radial location in the arc (for 
prescribed arc operating parameters), and the dissipation 
of electrical energy is identically balanced by convective 
and radiative losses. The transport coefficients required for 
the calculations were obtained from Devoto [4], and the 
thermodynamic properties were computed from statistical 
mechanics [5]. The radiation source term required for the 
model was determined from microscopic considerations 
which accounted for both continuum and line contributions. 
Details are provided by Greene [5]. 

Parametric calculations were performed in which the 
arc operating parameters (pressure, current and radius) were 
varied over wide ranges. Dependent variables of particular 
interest include the temperature profiles, the total wall heat 
flux, and the relative contribution of radiation to this heat 
flux. 

Temperature profiles computed for a range of currents are 
shown in Figs. 1 and 2. The profiles are extremely flat in the 
arc core. with sharp gradients existing near the wall. This 
behavior is due to the comparatively high thermal con- 
ductivities which characterize both gases at elevated tempera- 
tures and to the fact that radiation emission from the gases 
is intense and a strong function of temperature. Note that, 
for a prescribed set of arc operating conditions, the tempera- 


